Math 20550 - Summer 2016 Differentiability and the Chain Rule June 23, 2016

Problem 1. Is the function $f(x,y) = xy - 7x^8y^2 + \cos x$ differentiable at every point of \mathbb{R}^2 ? (Recall that \mathbb{R}^2 is the xy-plane.)

Problem 2. Write out the dependency tree for the following case: s = f(x, y, z, t) with x = x(u, v, w), y = y(v), z = z(u, w), and t = t(u, v, w).

Problem 3. Find the gradient of the function $f(x,y) = x^2 - 2xy + y^2$.

Problem 4. Find the partial derivatives $\frac{\partial f}{\partial r}$ and $\frac{\partial f}{\partial \theta}$ where $f(x,y) = x^2 - 2xy + y^2$, $x = r + \theta$, and $y = r - \theta$ using the gradient of f.

Problem 5. Find the gradient of the function $f(x, y, z) = ze^{x/z}$.

Problem 6. Find the derivative $\frac{d}{dt}(f \circ \mathbf{G})(3)$ where $f(x, y, z) = ze^{x/y}$ and $\mathbf{G}(t) = \langle t - 1, t^2 - 1, t \rangle$.

Problem 7. Find f_r and f_θ where $f(x,y) = x^2y^3$, $x = r\cos\theta$, and $y = r\sin\theta$.

Problem 8. Find $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$ where $z = \tan\left(\frac{u}{v}\right)$, u = 2s + t, and v = 3s - 2t.

Problem 9. Let W(s,t) = F(u(s,t),v(s,t)), where F, u, and v are differentiable functions and

$$u(1,0) = 2$$
 $u_s(1,0) = -2$ $u_t(1,0) = 6$ $F_u(2,3) = -1$ $v(1,0) = 3$ $v_s(1,0) = 5$ $v_t(1,0) = 4$ $F_v(2,3) = 10$

Find $W_s(1,0)$ and $W_t(1,0)$.

Problem 10. Suppose that z is implicitly defined as a function of x and y by the equation

$$z = e^x \sin(y + z).$$

Find all first partials of z.

Problem 11. The voltage V in a simple electrical circuit is slowly decreasing as the battery wears out. The resistance R is slowly increasing as the resistor heats up. Using Ohm's Law, V = IR, find how the current I is changing at the moment when $R = 400\Omega$, I = 0.08A, $\frac{dV}{dt} = -0.01V/s$, and $\frac{dR}{dt} = 0.03\Omega/s$.

Problem 12. Recall the Ideal Gas Law, PV = nRT, where P is pressure the gas is under, V is the volume of the gas, n is the number of moles of gas, R is the ideal gas constant, and T is the temperature of the gas. (The constant $R = 8.314J/K \cdot mol$, but you can just leave it as R.)

The pressure of 1 mole of an ideal gas is increasing at a rate of 0.05kPa/s and the temperature is increasing at a rate of 0.15K/s. Find the rate of change of the volume when the pressure is 20kPa and the temperature is 320K.